## Effects of Cytokine Secretion



## **Extravasation: Diapedesis**



## Outline

- T cell receptor structure
- Generation of TCR diversity

• Structure of MHC complex

## Immunological Synapse



## Lymphocytes Interacting with DCs



https://www.youtube.com/watch?v=\_73xQvaqxk8

## TCR Binds to Peptide:MHC Complex



complementarity determining regions

Peptide



From K. Christopher Garcia, Massimo Degano, Roby ...Stanfield, et al., "An αβ T cell receptor structure at e.5 Å and its orientation in the TCR-MHC complex," *Science* 274(5285): 209–219, 1996. Reprinted with hermission from AAAS.

## TCR Binds to Peptide:MHC Complex



## Outline

#### • T cell receptor structure

- Generation of TCR diversity
- How do we express so many different TCRs?
- Structure of MHC complex

## Germline Organization of the TCR Locus





## Two Types of T Cells



Figure 5.7 The Immune System, 3ed. (© Garland Science 2009)

## $TCR\alpha\beta$ Gene Rearrangement



## TCR Recombination Follows 12/23 Rule



## 12/23 Rule



## RAG1 And RAG2



## **Recombination of V Segments**



# V(D)J Recombination



| ıal sequence (RSS)<br>-pair spacer | ACAAAAACC<br>ACAAAAACC<br>nonamer<br>TGTTTTGG | GGTTTTTGT      | Recombination sig<br>with 12-base    |
|------------------------------------|-----------------------------------------------|----------------|--------------------------------------|
| Recombination sign<br>with 23-base | CACAGTG<br>heptamer 23<br>GTGTCAC             | CACTGTG<br>-12 | ınal sequence (RSS)<br>e-pair spacer |

recombination-activating genes

# **Diversification of VDJ Coding Joints**



# **Diversification of VDJ Coding Joints**



## BCR Vs. TCR Combinatorial Diversity

| Flowert                                               | Immunoglobulin        |               | αβ T-cell receptors   |        |
|-------------------------------------------------------|-----------------------|---------------|-----------------------|--------|
| Element                                               | H                     | κ+λ           | β                     | α      |
| Number of variable segments (V)                       | ~40                   | ~60           | ~30                   | ~100   |
| Number of diversity segments (D)                      | 23                    | 0             | 2                     | 0      |
| Number of D segments read in three frames             | rarely                | -             | often                 | _      |
| Number of joining segments (J)                        | 6                     | 5(κ) 4(λ)     | 12                    | ~50    |
| Number of joints with N- and P-nucleotides            | 2 (VD and DJ)         | 50% of joints | 2 (VD and DJ)         | 1 (VJ) |
| Number of V gene pairs                                | 1.5 x 10 <sup>6</sup> |               | 2.7 x 10 <sup>6</sup> |        |
| Total diversity with nucleotide addition and deletion | ~5 x 10 <sup>13</sup> |               | ~10 <sup>18</sup>     |        |

## $TCR\alpha\beta$ Gene Rearrangement



# Sources of TCR Diversity

#### Combinatorial diversity

- Multiple segments of the variable region of  $\alpha$  and  $\beta$ -chains
- Multiple  $\beta$ -chains
- Multiple  $\alpha$ -chains for a single  $\beta$ -chain

#### • Junctional diversity

Addition of N-nucleotides by TdT

## Question

 Every T cell initially starts with the same genomic DNA. How does each of the cells express different TCRs?

## Outline

- T cell receptor structure
- Generation of TCR diversity

• Structure of MHC complex

## TCR Binds to Peptide:MHC Complex



complementarity determining regions

Peptide



From K. Christopher Garcia, Massimo Degano, Roby ...Stanfield, et al., "An αβ T cell receptor structure at e.5 Å and its orientation in the TCR-MHC complex," *Science* 274(5285): 209–219, 1996. Reprinted with hermission from AAAS.

## MHC Molecules Display Antigens



## Structure of MHC Class I Molecule



## Structure of MHC Class II Molecule



## Expression of MHC I/II Molecules

| Tissue                     | MHC<br>class I | MHC<br>class II |
|----------------------------|----------------|-----------------|
| Lymphoid tissues           |                |                 |
| T cells                    | +++            | +*              |
| B cells                    | +++            | +++             |
| Macrophages                | +++            | ++              |
| Dendritic cells            | +++            | +++             |
| Epithelial cells of thymus | +              | +++             |

| Other nucleated cells |     |    |
|-----------------------|-----|----|
| Neutrophils           | +++ | Ι  |
| Hepatocytes           | +   | -  |
| Kidney                | +   | _  |
| Brain                 | +   | _† |

| Nonnucleated cells |   |   |
|--------------------|---|---|
| Red blood cells    | Ι | _ |

# Genetic Organization of MHC Locus





#### Polymorphism and Polygeny Contribute to MHC Diversity



#### **Expression of MHC Alleles Is Co-Dominant**



#### Gene Conversion Can Create New MHC Alleles



## Question

# How many MHC I proteins do you express, assuming we are all heterozygous?

How many MHC I proteins do the entire class express?

Why do we need so many different proteins?

## **Case Studies**

Toxic Shock Syndrome

# **Toxic Shock Syndrome**

Patient:

16-year-old female

Fever 39°C,

Systemic shock and bright red rash

WBC count 21,000 cells/microliter (normal range 5,000-10,000)

Diagnosis:

Vaginal culture positive for abundant S.aureus

Treatment :

Anti-staphylococcal antibiotics

IV fluids

IV immunoglobulin

Outcome:

Slowly recovered

#### Superantigens Bind Directly to TCR V $\beta$ and MHC II



## **Examples of Superantigens**

| Disease                            | Superantigen | τcr v <sub>β</sub>                                                                                                                                                                                                                    |  |
|------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Definite role for superantigen     |              |                                                                                                                                                                                                                                       |  |
| Toxic shock syndrome               | TSST-1       | V <sub>β</sub> 2                                                                                                                                                                                                                      |  |
|                                    | SEA          | $V_{\beta}3, V_{\beta}11$                                                                                                                                                                                                             |  |
|                                    | SEB          | $V_{eta}$ 3, $V_{eta}$ 12, $V_{eta}$ 14, $V_{eta}$ 15, $V_{eta}$ 17, $V_{eta}$ 20                                                                                                                                                     |  |
| Staphylococcal food poisoning      | SEC          | $\textbf{V}_{\beta}\textbf{5}, \textbf{V}_{\beta}\textbf{12}, \textbf{V}_{\beta}\textbf{13}.\textbf{1-2}, \textbf{V}_{\beta}\textbf{14}, \textbf{V}_{\beta}\textbf{15}, \textbf{V}_{\beta}\textbf{17}, \textbf{V}_{\beta}\textbf{20}$ |  |
|                                    | SED          | $V_{\beta}$ 5, $V_{\beta}$ 12                                                                                                                                                                                                         |  |
|                                    | SEE          | ν <sub>β</sub> 5.1, ν <sub>β</sub> 6.1–3, ν <sub>β</sub> 8, ν <sub>β</sub> 18                                                                                                                                                         |  |
| Streptococcal toxic shock syndrome | SPE-A        | $V_{\beta}8, V_{\beta}12, V_{\beta}14$                                                                                                                                                                                                |  |
| Scarlet fever                      | SPE-B        | $V_{\beta}2, V_{\beta}8$                                                                                                                                                                                                              |  |
| Mycoplasma arthritidis (rodent)    | MAM          | V <sub>β</sub> 17                                                                                                                                                                                                                     |  |
| Clostridium perfringens            | Enterotoxin  | ν <sub>β</sub> 6.9, ν <sub>β</sub> 22                                                                                                                                                                                                 |  |
| Suspected role for superantigen    |              |                                                                                                                                                                                                                                       |  |
| HIV                                | CMV          | V <sub>β</sub> 12                                                                                                                                                                                                                     |  |
| Type I diabetes mellitus           | MMTV-like    | ν <sub>β</sub> 7                                                                                                                                                                                                                      |  |
| Rabies virus                       | Nucleocapsid | V <sub>β</sub> 8                                                                                                                                                                                                                      |  |
| Toxoplasmosis                      | ?            | ν <sub>β</sub> 5                                                                                                                                                                                                                      |  |
| Mycobacterium tuberculosis         | ?            | V <sub>β</sub> 8                                                                                                                                                                                                                      |  |
| Yersinia enterocolitica            | ?            | $V_{\beta}3$ , $V_{\beta}6$ , $V_{\beta}11$                                                                                                                                                                                           |  |
| Kawasaki disease                   | ?            | $V_{\beta}2, V_{\beta}8$                                                                                                                                                                                                              |  |

### Expansion in Numbers of Superantigen-Specific T Cells

**RT-PCR** 



Figure 47.4 Case Studies in Immunology, 6ed. (© Garland Science 2012)

## How Do Superantigens Induce Systemic Shock?

- Direct activation of large number of T cells.
  - Tetanus toxoid: 1 in 10,000
  - Superantigen: 2%~20%
  - Massive and unregulated cytokine production

#### Cytokine Production Induced by Superantigens



# How do you determine whether a protein behaves as a superantigen?

#### Properties of superantigens:

- Can activate naive T cells
  - will induce proliferation of lymphocytes from newborns and directly from thymus
- No processing is required for T cell activation
  - can induce proliferation of purified T cells in the presence of fixed monocytes (can't process antigen)
- Binding of protein in question to MHC II confirms it as a superantigen

# Why is TSST-1 Rare?

• *S. aureus* colonized 25-50% of the population and half of them produce superantigens.

Protected by toxin specific antibodies

#### Why Did the 1918 Virus Kill So Many Healthy Young Adults?



Taubenberger & Morens. 1918 Influenza: the Mother of All Pandemics. *Emerging Infectious Diseases*, 12(1):15-22. 2006.