Pattern Recognition Receptors

C-type lectins receptors Toll-like receptors RIG 1 like receptors NOD-like receptors cytosolic DNA sensors

https://doi.org/10.1093/annonc/mdx179

Roles of Inflammation in Combating Infection

Outline

• Cytokines in innate immunity:

Leukocyte recruitment Acute phase response Interferon Type I Interferon: antiviral response Interferon-γ: macrophage activation

=

NK cells

Definition

 Cytokine: broad and loose category of small proteins that are important in cell signaling. They are released by cells and affect the behavior of other cells.

 Chemokine: chemotactic cytokines that to induce directed chemotaxis in nearby responsive cells.

Cytokine Receptors

Effects of Cytokine Secretion

Cytokines Attract Leukocytes to Sites of Infection

http://www.nature.com/ni/journal/v6/n9/fig_tab/ni0905-861_F1.html

Extravasation: Rolling

sialyl-Lewis^x moiety (s-Le^x)

Extravasation: Diapedesis

Phagocyte Adhesion to Endothelium

F

Neutrophil ROS

Neutrophil Extracellular Trap

Figure 3.6 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

CXCR2: a neutrophil receptor that can trigger NET formation

Neutrophil Extracellular Trap

Nature Reviews | Immunology

http://www.nature.com/nri/journal/v11/n8/full/nri3024.html

Chemokine Receptor Signalling

Monocytes Extravasation

Different Chemokines for Different Cells

Class	Chemokine	Produced by	Receptors	Cells attracted	Major effects
CXC	CXCL8 (IL-8)	Monocytes Macrophages Fibroblasts Epithelial cells Endothelial cells	CXCR1 CXCR2	Neutrophils Naive T cells	Mobilizes, activates, and degranulates neutrophils Angiogenesis
	CXCL7 (PBP, β-TG, NAP-2)	Platelets	CXCR2	Neutrophils	Activates neutrophils Clot resorption Angiogenesis
	CXCL1 (GROα) CXCL2 (GROβ) CXCL3 (GROγ)	Monocytes Fibroblasts Endothelium	CXCR2	Neutrophils Naive T cells Fibroblasts	Activates neutrophils Fibroplasia Angiogenesis
CC	CCL3 (MIP-1α)	Monocytes T cells Mast cells Fibroblasts	CCR1, 3, 5	Monocytes NK and T cells Basophils Dendritic cells	Competes with HIV-1 Antiviral defense Promotes T _H 1 immunity
	CCL4 (MIP-1β)	Monocytes Macrophages Neutrophils Endothelium	CCR1, 3, 5	Monocytes NK and T cells Dendritic cells	Competes with HIV-1
	CCL2 (MCP-1)	Monocytes Macrophages Fibroblasts Keratinocytes	CCR2B	Monocytes NK and T cells Basophils Dendritic cells	Activates macrophages Basophil histamine release Promotes T _H 2 immunity
	CCL5 (RANTES)	T cells Endothelium Platelets	CCR1, 3, 5	Monocytes NK and T cells Basophils Eosinophils Dendritic cells	Degranulates basophils Activates T cells Chronic inflammation
CXXXC (CX ₃ C)	CX3CL1 (Fractalkine)	Monocytes Endothelium Microglial cells	CX₃CR1	Monocytes T cells	Leukocyte–endothelial adhesion Brain inflammation

Cell Adhesion Molecules: Effects On Homing

Figure 11.9 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

Question

 How are immune cells recruited to sites of inflammation? What are the four steps and which molecules are involved?

Outline

• Cytokines in innate immunity:

Leukocyte recruitment Acute phase response Interferon Type I Interferon: antiviral response Interferon-γ: macrophage activation

NK cells

TNFa Contains Local Infection, But Leads to Septic Shock

TNF α Contains Local Infection, But Leads to Septic Shock

Effects of Cytokine Secretion

Cytokines Coordinate Body's Response to Infection

Acute-Phase Response

CRP is a general indicator of systemic inflammation

Cytokine Receptor Signalling

Question

 How do TNFalpha/IL-6/IL-1beta work? Explain their effects on liver and endothelium.

Outline

• Cytokines in innate immunity:

Leukocyte recruitment Acute phase response

Interferon

Type I Interferon: antiviral response Interferon-γ: macrophage activation

NK cells

Interferons

• Interfere with viral replication in previously uninfected tissue culture cells.

- Restrict viral spreading
- Act on both infected and neighboring cells
- Type I interferon: Interferon- α and β

Intracellular TLRs Activate IFN Pathway

Interferons Induce Anti-Viral Responses

MX, unkown but very important AO: Degrade viral RNA PKR: Inhibiting translation

Inhibiting RNA Translation

IFN-y Activates Macrophage

Figure 24.2 Case Studies in Immunology, 6ed. (© Garland Science 2012)

Question

- What are the major cytokines that defend against viral infection?
- How do these cytokines work?

Outline

• Cytokines in innate immunity:

Leukocyte recruitment Acute phase response Interferon Type I Interferon: antiviral response Interferon-γ: macrophage activation

NK cells

NK cells

- Lymphoid progenitor
- Kill tumor cell lines in vitro
- Invariant surface receptor

NK Cells Kill Stressed Cells

https://www.youtube.com/watch?v=HNP1EAYLhOs

https://www.youtube.com/watch?v=Va1jaBGwoT8
NK cells Kill Infected Cells

NK Cells Do Not Kill Normal Cells

NK Cells Kill Abnormal Cells

NK Cells Kill Abnormal Cells

Two Types of Receptors

killer cell immunoglobulin-like receptors (KIRs)

killer cell lectin-like receptors (KLRs and Ly49 receptors)

Activating Receptors

Activating Ligands

Question

- What is NOT the function of cytokines?
- A) guide immune cell migration
- B) activate intracellular signaling
- C) activate innate immune cells
- D) activate adaptive immune cells
- E) none of the above

Case Studies

- Leukocyte Adhesion Deficiency
- Interferon-γ Receptor Deficiency

Leukocyte Adhesion Deficiency

Patient:

4-week-old female

Fever 39°C,

Redness and swelling around umbilical cord stump

WBC count 20,000 cells/microliter (normal range 5,000-10,000)

Skin culture positive for E.coli and S.aureus.

Family history:

A brother died at 1 year of age due to Staphylococcal pneumonia infection

Diagnosis:

Rebuck skin window-monitor the migration of immune cells into the damaged skin.

No white cells

Treatment :

Bone marrow transplantation

Deficient of Surface LFA

Figure 27.5 Case Studies in Immunology, 6ed. (© Garland Science 2012)

LFA-1

		Name	Tissue distribution	Ligand
Integrins	LFA-1	αլ:β₂ (LFA-1, CD11a/CD18)	Monocytes, T cells, macrophages, neutrophils, dendritic cells	ICAMs
Bind to cell-adhesion molecules and extracellular matrix. Strong adhesion		α _M :β₂ (Mac-1, CR3, CD11b/CD18)	Neutrophils, monocytes, macrophages	ICAM-1, iC3b, fibrinogen
		α _x :β ₂ (CR4, p150-95, CD11c/CD18)	Dendritic cells, macrophages, neutrophils	iC3b
		α₄:β₁ (VLA-4, LPAM-2, CD49d/CD29)	Lymphocytes, monocytes, macrophages	VCAM-1 Fibronectin
		α₅:β₁ (VLA-5 <i>,</i> CD49d/CD29)	Monocytes, macrophages	Fibronectin
		α₄:β ₇ (LPAM-1)	Lymphocytes	MAdCAM-1
		α _ε :β ₇	Intraepithelial lymphocytes	E-cadherin

LFA-1 is Required for Leukocyte Infiltration

Figure 27.1 part 2 of 2 Case Studies in Immunology, 6ed. (© Garland Science 2012)

LFA-1 is Required for T Cell Activation

Figure 27.4 Case Studies in Immunology, 6ed. (© Garland Science 2012)

What's Wrong with the Patient?

- LFA-1 defect leads to impair recruitment of leukocytes to infected tissue.
- Poor T cell activation
- Severe immune deficiency
- Poor wound healing
 - Mechanism not understood.

Interferon-y Receptor Deficiency

Patient:

2 1/2-year-old female

enlarged lymph nodes

Normal number of leukocytes and Ig levels

Family history:

Distantly related

Diagnosis:

Lymph nodes positive for Mycrobacterium avium

Treatment :

Antibiotics

Outcome:

Died after recurrent infection

IFN-y Activates Macrophage

Figure 24.2 Case Studies in Immunology, 6ed. (© Garland Science 2012)

IFN-y Signaling

Figure 24.3 Case Studies in Immunology, 6ed. (© Garland Science 2012)

What's Wrong with the Patient?

- Defect in IFN-γ signaling
- Unable to activate infected macrophages
- Susceptible to intracellular bacterial infection