Extracellular Pathogens Activate Complement

	Extracellular			
Site of infection	Interstitial spaces, blood, lymph	Epithelial surfaces		
		0000		
Organisms	Viruses Bacteria Protozoa Fungi Worms	Neisseria gonorrhoeae Streptococcus pneumoniae Vibrio cholerae Helicobacter pylori Candida albicans Worms		
Protective immunity	Complement Phagocytosis Antibodies	Antimicrobial peptides Antibodies, especially IgA		

Stages of Complement Activation

Complement as a target in COVID-19

Fig. 1 | Targeting complement in SARS-CoV-2-associated lung injury. Complement activation may contribute to the maladaptive inflammatory response seen in some patients with severe COVID-19. Inhibition of C3 or C5 may have therapeutic potential. ARDS, acute respiratory distress syndrome.

Macrophages Express Receptors for Pathogen Constituents

Figure 3.2 (part 1 of 2) Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Mannose receptor: sugars

Dectin-1 receptor: yeast glycans

Scavenger receptor: uncharged lipoprotein.

CD36 receptor: long lipids

Pathogen Surface molecules

Phagocytosis

Phagocytosis

 Pathogens not immediately cleared by phagocytosis will trigger pattern recognition receptors

- Activation of PRRs causes inflammation
- Pathogen and microbes

Course of Immune Activation

Course of Immune Activation

Outline

- Pattern recognition receptors PAMS TLRs Cytosolic DNA/RNA sensors NODs Inflammasome
- Case study: Hereditary Periodic Fever Syndromes

Pattern Recognition Receptors

Receptor characteristic	Innate immunity	Adaptive immunity
Specificity inherited in the genome	Yes	No
Triggers immediate response	Yes	No
Recognizes broad classes of pathogens	Yes	No
Encoded in multiple gene segments	No	Yes
Requires gene rearrangement	No	Yes
Clonal expression	No	Yes
Able to discriminate between even closely related molecular structures	Yes	Yes

PAMP and PRR

Pathogen Associated Molecular Patterns

http://www.sabiosciences.com/pathwaymagazine/pathways7/toll-like-receptors-and-innate-immunity.php

Mammalian Cell Surface

Surface Sugars

Bacterial Cell Wall

Outline

- Pattern recognition receptors PAMS TLRs NLRs Inflammasome
- Case study: Hereditary Periodic Fever Syndromes

Discovery of Toll-like Receptors

Jules A. Hoffmann: 2011 Nobel Prize in Physiology or Medicine He found that this receptor has an immune function in 1996

Drosophila TLR

Drosophila TLR

Diversity of Toll-like Receptors

Bacterial Cell Surface

TLR5 flagella

PAMPs are on Cell Surfaces and Endosomes

Figure 3.2 part 2 of 2 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

Autophagy

http://journal.frontiersin.org/Journal/10.3389/fimmu.2012.00426/full

Diversity of Toll-like Receptors

Innate immune recognition by mammalian Toll-like receptors		
Toll-like receptor	Ligand	
TLR-1:TLR-2 heterodimer	Lipomannans (mycobacteria) Diacyl and triacyl lipopeptides (bacteria)	
TLR-2:TLR-6 heterodimer	Lipoteichoic acids (Gram-positive bacteria) Cell-wall β -glucans (fungi)	
 TLR-3	Double-stranded RNA (viruses), poly I:C	
TLR-4	LPS (Gram-negative bacteria)	
TLR-5	Flagellin (bacteria)	
TLR-7	Single-stranded RNA (viruses)	
TLR-8	Single-stranded RNA (viruses)	
 TLR-9	DNA with unmethylated CpG (bacteria and DNA viruses)	
TLR-10 (human only)	Unknown	
TLR-11 (mouse only)	Profilin and profilin-like proteins (<i>Toxoplasma gondii</i> , uropathogenic bacteria)	
TLR-12 (mouse only)	Profilin (<i>Toxoplasma gondii</i>)	
TLR-13 (mouse only)	Single-stranded RNA (bacterial ribosomal RNA)	

Structure of Toll-like Receptors

Figure 3.12 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Structure of TLR4/LPS Complex

TLR adaptors

MyD88 activates both NF-kB and IFN response TRIF activates IFN response

TLRs Activate NF-_KB Pathway

Intracellular TLRs Activate IFN Pathway

TLRs Also Recognize DAMPs

http://www.nature.com/nrrheum/journal/v6/n3/full/nrrheum.2009.278.html

Question

• TLR

- What are they?
- What do they bind to? List two specific examples.
- What is the consequence of their activation?

Question

- What is true about Toll like receptors?
- A) They recognize microbial molecules but not host molecules
- B) They are only present on host cell surface
- C) They are expressed by all cell types
- D) They initiate both anti-bacterial and antiviral responses

Outline

- Pattern recognition receptors PAMS TLRs Cytosolic DNA/RNA sensors NLRs Inflammasome
- Case study: Hereditary Periodic Fever Syndromes

Cytosolic Innate Immune Receptors

Ligand	Recognition strategies
RIG-I	Triphosphate dsRNA
MDA-5	dsRNA
cGAS	DNA
NOD1	γ-Glutamyl diaminopimelic acid (iE-DAP)
NOD2	Muramyl dipeptide (MDP)
NLRP1	Pathogen protease activity
NLRP3	Reduced intracellular potassium, ROS, disruption of lysosomes
NAIP1 with NLRC4 (mouse)	Needle subunit of bacterial T3SS
NAIP2 with NLRC4 (mouse)	Rod subunit of bacterial T3SS
NAIP5 with NLRC4 (mouse)	Flagellin
NAIP with NLRC4 (human)	Flagellin
Pyrin	Inactivation of Rho GTPases
AIM2	DNA

Mammalian Cellular DNA

http://www.tokresource.org/tok_classes/biobiobio/biomenu/transcription_translation/

Cytoplasmic Viral RNA

RIG-1 Senses Intracellular Virus

cGAS - Cytosolic Sensor of DNA

Intracellular Bacteria

Outline

- Pattern recognition receptors PAMS TLRs Cytosolic DNA/RNA sensors NLRs Inflammasome
- Case study: Hereditary Periodic Fever Syndromes

NOD-like Receptors

Pattern Recognition Receptors

C-type lectins receptors Toll-like receptors RIG 1 like receptors NOD-like receptors cytosolic DNA sensors

peptidoglycans

https://doi.org/10.1093/annonc/mdx179

Inflammation is Tightly Controlled

http://www.adipogen.com/inflammasomes/

Inflammasomes

Pyroptosis

<u>https://www.nature.com/articles/nature18590#supplementary-information</u> Movie 1. <u>Membrane targeting of the Gasdermin-N domain of GSDMD during pyroptosis</u>

Pyroptosis

http://www.cell.com/trends/biochemical-sciences/fulltext/S0968-0004(16)30182-7

Summary

- Pattern recognition receptors recognize both PAMPs and DAMPs
- PRRs are on cell surface, endosomal compartments and cytoplasm
- Their activation leads to signal transduction
 and secretion of inflammatory cytokines
- Defend against microbial pathogens but also cause host damage

Question

• What are the Pattern recognition receptors in the cytosol? What do they sense?

Outline

- Pattern recognition receptors PAMS TLRs NODs Inflammasome
- Case study: Hereditary Periodic Fever Syndromes

Hereditary Periodic Fever Syndromes

Patient:

- 1 week old
- Hearing loss detected at birth
- Fever, irritability
- WBC count 21,000 cells/microliter (normal range 5,000-10,000)
- No bacterial could be cultured

Treatment

- Antimicrobial drugs (suspicion of viral or bacterial meningitis)
- No alleviation of fever, no diagnosis

Follow-up

- Continued fevers
- Enlarged liver and spleen
- Evidence of arthritis in the knee joint
- Diffuse rash on most of the body
- Increased erythrocyte sedimentation rate
 - signals an increase in concentration of acute phase proteins
- Increased C-reactive protein levels (acute-phase response)

Treatment

- IL-1 receptor antagonist (Kineret)
- Symptoms disappeared
- Requires maintenance treatment with Kineret

Hereditary Periodic Fever Syndromes

Figure 7-2 Case Studies in Immunology, 5ed. (© Garland Science 2008)

What is wrong with the patient?

- Genetic defect impairing regulation of of caspase-1, which is required to process IL-1β to the mature form.
- Thus, resulting in unchecked processing and secretion of IL-1β, which can be blocked with IL-1 receptor agonist.

IL-1 processing

Figure 3.16 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

The Autoinflammatory Diseases

Disease (common abbreviation)	Clinical features	Inheritance	Mutated gene	Protein (alternative name)
Familial Mediterranean fever (FMF)	Periodic fever, serositis (inflammation of the pleural and/or peritoneal cavity), arthritis, acute-phase response	Autosomal recessive	MEFV	Pyrin
TNF receptor-associated periodic syndrome (TRAPS) (also known as familial Hibernian fever)	Periodic fever musicia, rash, acute-nhase response	Autosomal dominant	TNFRSF1A	TNF- $lpha$ 55 kDa receptor (TNFR-I)
Pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA)	renouic level, ingalgia, iasii, acute-pilase response	Autosomal dominant	PSTPIP1	CD2-binding protein 1
Muckle–Wells syndrome	Periodic fever, urticarial rash, joint pains, conjunctivitis, progressive deafness	Autosomal dominant	NLRP3	Cryopyrin
Familial cold autoinflammatory syndrome 1 (FCAS1) (familial cold urticaria)	Cold-induced periodic fever, urticarial rash, joint pains, conjunctivitis			
Chronic infantile neurologic cutaneous and articular syndrome (CINCA)	Neonatal-onset recurrent fever, urticarial rash, chronic arthropathy, facial dysmorphia, neurologic involvement			
Hyper IgD syndrome (HIDS)	Periodic fever, elevated IgD levels, lymphadenopathy	Autosomal recessive	МVК	Mevalonate synthase
Blau syndrome	Granulomatous inflammation of skin, eye, and joints	Autosomal dominant	NOD2	NOD2