Tumor Immunobiology

- Tumor formation
- Tumor microenvironment
- Tumor Immune evasion
- Tumor Immune therapy

War Against Cancer

Cancer

Cancers of the blood system

- Leukemias:
 - Develop in the bone marrow and moves to periphery
 - Acute: the bone marrow cells cannot mature properly
 - Chronic: the bone marrow cells can mature partly but not completely
- Lymphomas:
 - Develop in the lymph nodes
 - Non Hodgkin: B and T cells
 - Hodgekin: abnormal B cells (very large, Reed-Sternber cell)
- Multiple Myeloma
 - Plasma cells in the bone marrow

Cancers of the blood system

Figure 1.5 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Chronic Myelogenous Leukemia (CML) Is Characterized by a Translocated Chromosome

Philadelphia chromosome:

- reciprocal translocation between chromosome 9 and 22 [t(9;22)(q34;q11)]
- occurs in 95% of CML cases

Bone Marrow Transplantation (2004) 33, 247–249.

http://en.wikipedia.org/wiki/Philadelphia_chromosome

Gleevec

It is Hard to Grow A Tumor

Cells accumulate multiple mutations Abnormal chromosomes Epigenetic changes

Uncontrolled growth of progeny of transformed cells

Cancer is unique in each person

Spread to unconnected parts

http://www.nature.com/scitable/topicpage/cell-division-and-cancer-14046590

Tumor Associated Antigens

Point mutation Gene fusion Increase of expression level

Figure 16.17 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

Immune surveillance

Cancer Immunoediting

Those mutated cells escape immune detection develop into tumors That is why cancer is so hard to treat once they develop

Immune surveillance

Tumor Immune Evasion

Mechanisms by which tumors avoid immune recognition							
Low immunogenicity	Tumor treated as self antigen	Antigenic modulation	Tumor-induced immune suppression	Tumor-induced privileged site			
No peptide:MHC ligand No adhesion molecules No co-stimulatory molecules	Tumor antigens taken up and presented by APCs in absence of co-stimulation tolerize T cells	T cells may eliminate tumors expressing immunogenic antigens, but not tumors that have lost such antigens	Factors (e.g.,TGF-β, IL-10, IDO) secreted by tumor cells inhibit T cells directly. Expression of PD-L1 by tumors	Factors secreted by tumor cells create a physical barrier to the immune system			
T cell CD8 CD28 LFA-1 TCR	T cell DC	T cell apoptosis	CTL Θ Θ TGF-β PD-L1				
tumor	tumor	tumor	● IDO ● TGF-β ● TGF-β, ● IL-10	ATA C			

Cancer Microenviroment

Cancers are Wounds that Never Heal

http://earthingcanada.ca/chronic-inflammation-and-cancer/

Myeloid Derived Suppressor Cells

MDSC act as a T cell target by presenting antigen to them and then disabling the TCR upon engagement of the MHC complex through production of reactive nitrogen species

Tumor Microenviroment

http://commons.wikimedia.org/wiki/File:Tumor_microenvironment.jpg

Tumor Immunobiology

- Tumor formation
- Tumor microenvironment
- Tumor Immune evasion
- Tumor Immune therapy

How Do We Break the Tolerance?

- Target Tumor associated myeloid cells
- How to use tumor specific antigens?
 - Adoptive T-cell therapy
 - Expanded tumor specific T cells in vitro
 - Monoclonal antibodies
 - Tagged with toxin or radionuclide
 - Vaccination
 - Infections that induce cancer-prevention
 - Tumor rejection antigen unknown
 - Dendritic cells loaded with tumor antigen
 - Make tumors immunogenic (using patient cells)
 - Transfect patient tumor cells with B7, cytokine
 - Virus to lyse tumor cells
 - CTLA-4 and PD-1 inhibition

Tumor Rejection Antigens: Basis of Immunotherapies

Potential tumor-rejection antigens have a variety of origins						
Class of antigen	Antigen	Nature of antigen	Tumor type			
Tumor-specific mutated oncogene or tumor suppressor gene	Cyclin- dependent kinase 4	Cell-cycle regulator	Melanoma			
	β-Catenin	Relay in signal transduction pathway	Melanoma			
	Caspase 8	Regulator of apoptosis	Squamous-cell carcinoma			
	Surface lg/ idiotype	Specific antibody after gene rearrangements in B-cell clone	Lymphoma			
Cancer-testis antigens	MAGE-1 MAGE-3 NY-ESO-1	Normal testicular proteins	Melanoma Breast Glioma			
Differentiation	Tyrosinase	Enzyme in pathway of melanin synthesis	Melanoma			
Abnormal gene expression	HER-2/neu	Receptor tyrosine kinase	Breast Ovary			
	WT1	Transcription factor	Leukemia			
Abnormal post- translational modification	MUC-1	Underglycosylated mucin	Breast Pancreas			
Abnormal post- transcriptional modification	NA17	Retention of introns in the mRNA	Melanoma			
Oncoviral protein	HPV type 16, E6 and E7 proteins	Viral transforming gene products Cervical carcinoma				

T Cells Expressing Chimeric Antigen Receptors

Kill transformed B cells

Long lasting T cell response

Memory?

Limitation

- Potency
- Specific tumor surface antigen
 - CD19 mutation

- Safety
- Self reactive T cells
 - Artificial amplification
- Cytokine storm

Antibody Therapy

Monoclonal Antibodies Against Tumor Antigens

Tumor tissue origin	Type of antigen	Antigen	Tumor type
Lymphoma/ leukemia	Differentiation antigen	CD5 Idiotype CD52 (Campath-1H)	T-cell lymphoma B-cell lymphoma T- and B-cell lymphoma/ leukemia
	B-cell signaling receptor	CD20	Non-Hodgkin's B-cell lymphoma
Solid tumors	Cell-surface antigens Glycoprotein Carbohydrate	CEA, mucin-1 Lewis ^y CA-125	Epithelial tumors (breast, colon, lung) Epithelial tumors Ovarian carcinoma
	Growth factor receptors	Epidermal growth factor receptor HER-2/neu IL-2 receptor Vascular endothelial growth factor (VEGF)	Lung, breast, and head and neck tumors Breast, ovarian tumors T- and B-cell tumors Colon cancer Lung, prostate, breast
	Stromal extracellular antigen	FAP-α Tenascin Metalloproteinases	Epithelial tumors Glioblastoma multiforme Epithelial tumors

Limitation

- Antibody itself does not kill
- Penetration
 - Single chain Fv molecule
- Soluble target Protein
 - Competition
- Drugs that require internalization

How Do We Break the Tolerance?

- Target Tumor associated myeloid cells
- How to use tumor specific antigens?
 - Adoptive T-cell therapy
 - Expanded tumor specific T cells in vitro
 - Monoclonal antibodies
 - Tagged with toxin or radionuclide
 - Vaccination
 - Infections that induce cancer-prevention
 - Tumor rejection antigen unknown
 - Dendritic cells loaded with tumor antigen
 - Make tumors immunogenic (using patient cells)
 - Transfect patient tumor cells with B7, cytokine
 - CTLA-4 and PD-1 inhibition

Prevention

•Cervical cancer:

- •Virtually all cases caused by HPV,
 - HPV types, 16 and 18, are responsible for about 70% of all cases.

•Anal cancer:

- •About 95% caused by HPV.
 - Most caused by HPV type 16.

•Oropharyngeal cancers:

About 70% caused by HPV.more than half of cancers diagnosed linked to HPV type 16.

•Rarer cancers:

•HPV causes about 65% of vaginal cancers, 50% of vulvar cancers, and 35% of penile cancers.

• Most of these are caused by HPV type 16.

The HPV-16 vaccine induces high titers of specific antibody that persist long after vaccination

Cancer Vaccine as Treatment?

Options

- Provenge (sipuleucel-T treatment)
- metastatic castrate-resistant (mCRPC)
- Antigen loaded Dendritic Cells

Provenge

- Hormone refactory prostate cancer
- Collection of white blood cells
- Transduction w/ PAP & GMCSF to activate antigen presenting cells
- Return cells into patient
- First immunotherapy product !
- PAP = prostatic acid phosphatase
- GMCSF = granulocyte macrophage colony stimulating factor

T-VEC (Imlygic[™])

FDA approved in 2015, however failed in clinical trials

Checkpoint Blockade: CTLA-4

- Ipilimumab: approved in 2011 for the treatment of melanoma, undergoing clinical trials for lung, bladder, prostate and other cancer.
- Gp100:peptide vaccine

Checkpoint Blockade: CTLA-4

Potential auto-immune problems

• Pembrolizumab: In 2017 the FDA approved it for any unresectable or metastatic solid tumor with certain genetic anomalies (mismatch repair deficiency or microsatellite instability).

The Nobel Prize in Physiology or Medicine 2018

their discovery of cancer therapy by inhibition of negative immune regulation

James P. Allison

Tasuku Honjo

Immune Checkpoint Blockade Therapy

https://www.sciencedirect.com/science/article/pii/S1359610117300758#fig0005

Model: Combinatorial Therapy

Future Direction

- Combinatorial Therapy
 - Anti PD-1
 - Anti CTLA-4
 - Vaccine
 - IL-2
- Cell Therapy
 - CAR-T, CAR-NK, CAR-Neutrophil
- Personalized Treatment