Term Paper

• Any topic related to SARS-COV-2

- 8-10 pages
- Timer New Roman, 12, 1" margin
- Due 12/12 at midnight
- Homework and other make ups are due the same time.

Outline

Primary Immunodeficiency T cells B cells Innate Immunity

Acquired Immunodeficiency HIV/AIDS

Immunodeficiency

- A defect in one or more components of the immune response
 - History of recurrent infections with similar pathogens suggests a diagnosis of immunosuppression

Involves Both Innate and Adaptive Immunity

Duration of infection

Human Immunodeficiency Syndromes

Major category	Example	Gene defect	Inheritance	Cells affected	Immune defect	Antibody levels	Common infections/ other features
Combined immunodeficiencies	γ_{c} deficiency	IL2RG	XL	T cells, NK cells	Deficient T-cell and NK-cell development	Low	General susceptibility to opportunistic and standard pathogens
(CIDs) limited to the immune system	RAG-1 or RAG-2 deficiency	RAG1; RAG2	AR	T cells, B cells	Deficient T- and B-cell development	Low	General susceptibility to opportunistic and standard pathogens
CIDs with defects in tissues outside the immune system	FOXN1 deficiency; Nude phenotype	FOXN1	AR	Thymic epithelium, T cells	Deficient T-cell development	Decreased	General susceptibility to opportunistic and standard pathogens
	Job syndrome	STAT3	AD	$T_{\rm H}17$ and $T_{\rm FH}$ cells	Defective T _H 17 and T _{FH} cell development	High IgE	Extracellular bacteria, mucocutaneous candidiasis, bone development abnormalities
	Bruton's X-linked agammaglobulinemia (XLA)	ВТК	XL	B cells	Absent mature B cells	Low	Pyogenic bacteria and enteroviruses
Antibody deficiencies	AID deficiency	AICDA	AR	B cells	Defective Ig class-switching and somatic hypermutation	lgG and IgA low; IgM increased	Bacterial infections, enlarged germinal centers
	Selective IgA deficiency	Unknown	?	B cells	Deficient clas-switched IgA B cells	Low–absent IgA; other isotypes	Typically asymptomatic

Human Immunodeficiency Syndromes

Major category	Example	Gene defect	Inheritance	Cells affected	Immune defect	Antibody levels	Common infections/ other features
Immune dysregulation	Perforin deficiency	PRF1	AR	CTLs and NK cells	Impaired CTL and NK-cell cytotoxicity	Normal	Fever, hepatosplenomegaly
	IL-10 deficiency	IL10	AR	Multiple	No IL-10	Normal	Inflammatory bowel disease (IBD)
	Elastase deficiency	SCN1	AD	Neutrophils	Neutrophil deficiency	Normal	Severe bacterial infections; myelodysplasia/leukemia
Phagocyte defects	GATA2 deficiency	GATA2	AD	Monocytes and DCs	Monocyte and DC deficiency	Normal	Susceptibility to mycobacteria, HPV, histoplasmosis; myelodysplasia/leukemia
Innate immunity	IL-12p40 deficiency	IL12B	AR	DCs, monocytes, and macrophages	IFN-γ secretion	Normal	Mycobacterial and <i>Salmonella</i> infections
defects	IFN-γ receptor 1 deficiency	IFNGR1	AR/AD	Multiple	IFN- γ signaling	Normal	Mycobacterial and <i>Salmonella</i> infections

Human Immunodeficiency Syndromes

Major category	Example	Gene defect	Inheritance	Cells affected	Immune defect	Antibody levels	Common infections/ other features
Autoinflammatory disorders	Muckle–Wells syndrome	NLRP3	AD (GOF)	Neutrophils and monocytes	Inflammasome hyperactivity	Normal	Recurrent fever, urticaria
Complement deficiencies	C1q deficiency	C1QA	AR	Apoptotic cells	Deficient activation of classical complement pathway	Normal	Infections by encapsulated bacteria (e.g., <i>Streptococcus</i> <i>pneumoniae</i> , <i>Klebsiella</i> <i>pneumoniae</i>), immune- complex disease (e.g., SLE)
	MASP deficiency	MASP2	AR	None	Deficient activation of lectin complement pathway	Normal	Pyogenic bacteria, autoimmunity
Phenocopies of inborn errors of immunity	APECED syndrome	AIRE	AR	T cells	Impaired negative selection of T cells	Normal, with autoantibodies	Chronic mucocutaneous candidiasis, multiple endocrinopathies

The Boy in the Bubble

Courtesy of Carol Ann Demaret

Lymphocytes Development Defects Lead to Immune Deficiency

Purine Salvage Pathway

B Cell Defects

Name of deficiency syndrome	Specific abnormality	Immune defect	Susceptibility
Wiskott–Aldrich syndrome	X-linked; defective WASp gene	Defective anti- polysaccharide antibody, impaired T-cell activation responses, and T _{reg} dysfunction	Encapsulated extracellular bacteria Herpesvirus infections (e.g., HSV, EBV)
X-linked agamma- globulinemia	Loss of BTK tyrosine kinase	No B cells	Extracellular bacteria, enteroviruses
Hyper-IgM syndrome	CD40 ligand deficiency CD40 deficiency NEMO (IKK) deficiency	No isotype switching and/or no somatic hypermutation plus T-cell defects	Extracellular bacteria Pneumocystis jirovecii Cryptosporidium parvum
Hyper-IgM syndrome— B-cell intrinsic	AID deficiency UNG deficiency	No isotype switching +/- normal somatic hypermutation	Extracellular bacteria
Hyper-IgE syndrome (Job's syndrome)	Defective STAT3	Block in T _H 17 cell differentiation Elevated IgE	Extracellular bacteria and fungi
Common variable immunodeficiency	Mutations in TACI, ICOS, CD19, etc.	Defective IgA and IgG production	Extracellular bacteria
Selective IgA	Unknown; MHC-linked	No IgA synthesis	Respiratory infections

Figure 13.1 (part 2 of 3) Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Results of B Cell Defects

Loss of T cell help: Susceptible to extracellular bacteria an d some viral infection

Transient IgG Deficiency in Newborns

Lymphocytes Activation Defects Lead to Immune Deficiency

CVID, common variable immune deficiency

Results of T Cell Defects

Name of deficiency syndrome	Specific abnormality	Immune defect	Susceptibility
Severe combined immune deficiency	See text an	General	
DiGeorge's syndrome	Thymic aplasia	Variable numbers of T cells	General
MHC class I deficiency	Mutations in TAP1, TAP2, and tapasin	No CD8 T cells	Chronic lung and skin inflammation
MHC class II deficiency	Lack of expression of MHC class II	No CD4 T cells	General

Figure 13.1 (part 1 of 3) Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

• CD 4 T cells activates macrophages, dendritic cells and B cells

Defects in Cytotoxic T Cell Function

Defects in Innate Immunity

Name of Specific abnormality		Immune defect	Susceptibility
Phagocyte deficiencies	Many different	Loss of phagocyte function	Extracellular bacteria and fungi
Complement deficiencies	Many different	Loss of specific complement components	Extracellular bacteria especially <i>Neisseria</i> spp.

Defects in Phagocytic Cells Are Associated with Persistence of Bacterial Infection

Disease	Examples	Gene defect	Inheritance	Immune defect	Common infections
	Elastase-2 deficiency (SCN1)	ELANE	AD		Severe pyogenic bacterial infections
Severe congenital	GFI-1 deficiency (SCN2)	GFI1	AD		Severe pyogenic bacterial infections
neutropenia	HAX1 deficiency (SCN3, or Kostmann's disease)	HAX1	AR	Neutrophil deficiency	Severe pyogenic bacterial infections
	G6PC3 deficiency (SCN4)	G6PC3	AR		Severe pyogenic bacterial infections
	β2 integrin deficiency (LAD-1)	ITGB2	AR		Ulcerating skin infections without pus
Leukocyte adhesion deficiency	GDP-fucose transporter deficiency (LAD-2)	SLC35C1	AR	Defective leukocyte extravasation	Recurrent bacterial infections
	Kindlin-3 deficiency (LAD-3)	FERMT3	AR		Severe bacterial infections
	MyD88 deficiency	MYD88	AR	Impaired TLR and IL-1	Noninvasive bacterial infections, skin and respiratory tract
TLR/IL-1R signaling	IRAK4 deficiency	IRAK4	AR	receptor signaling	Noninvasive bacterial infections, skin and respiratory tract
defects	TLR-3 deficiency	TLR3	AD or AR	Impaired types I and III	Herpes simplex and varicella-zoster encephalitis
	TRAF3 deficiency	TRAF3	AD	interferon responses	Herpes simplex and varicella-zoster encephalitis
Non-TLR PRR signaling defect	CARD9 deficiency	CARD9	AR	Defective phagocyte recognition of fungi; impaired T _H 17 response	Invasive fungal infections
Chronic granulomatous disease	X-linked CGD	СҮВВ	XL	Impaired intracellular killing in neutrophils and monocyte/macrophages	Severe, recurrent bacterial infections of barrier tissues

Leukocyte Adhesion Deficiency

Figure 3-1 part 2 of 2 Case Studies in Immunology, 5ed. (© Garland Science 2008)

Granuloma-Defect Killing

http://missinglink.ucsf.edu/lm/IDS_106_LowerGI/Lower%20GI/sicases/case1.htm

Complement Deficiency

Complement Deficiency

Complement protein	Effects of deficiency		
C1, C2, C4	Immune-complex disease		
С3	Susceptibility to encapsulated bacteria		
C5–C9	Susceptibility to <i>Neisseria</i>		
Factor D, Factor P (properdin)	Susceptibility to encapsulated bacteria and <i>Neisseria</i> but no immune-complex disease		
Factor I	Similar effects to deficiency of C3		
MCP, factor I, or factor H	Atypical hemolytic uremic syndrome		
Polymorphisms in factor H	Age-related macular degeneration		
DAF, CD59	Autoimmune-like conditions, including paroxysmal nocturnal hemoglobinuria		
C1INH	Hereditary angioedema (HAE)		

Immune Complex is Removed in the Spleen

Figure 10.31 part 2 of 4 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

Question

- Defects in which gene results in the most severe immune deficiency?
- A) MHC I
- B) MHC II
- C) AID
- D) C3

Primary Immunodeficiency T cells B cells Innate Immunity

Acquired Immunodeficiency HIV/AIDS

Acquired Immune Deficiency Syndrome (AIDS)

Course of Untreated HIV Infection

Opportunistic Infections and Malignancies Are the Cause of Death of Patients with AIDS

Infections	Infections					
Parasites	<i>Toxoplasma</i> spp. <i>Cryptosporidium</i> spp. <i>Leishmania</i> spp. <i>Microsporidium</i> spp.					
Intracellular bacteria	<i>Mycobacterium tuberculosis Mycobacterium avium intracellulare Salmonella</i> spp.					
Fungi	Pneumocystis jirovecii Cryptococcus neoformans Candida spp. Histoplasma capsulatum Coccidioides immitis					
Viruses	Herpes simplex Cytomegalovirus varicella-zoster					

Malignancies

Kaposi's sarcoma – (HHV8) Non-Hodgkin's lymphoma, including EBV-positive Burkitt's lymphoma Primary lymphoma of the brain

HIV Structure

Cellular Tropism of HIV Is Determined by Expression of CCR5 and CXCR4 Receptors

http://scienceblogs.com/denialism/HIV_attachment.gif

HIV Tropism

HIV Enters Through Mucosal Surfaces

The Life Cycle of HIV

HIV can latently infect cells

The Life Cycle of HIV

HIV replication requires activation of infected cells

HIV Evades Host Immune Responses

Lymphoid Tissue is the Major Reservoir of HIV Infection

Strategies to Combat HIV Infection

Success of Anti-Retroviral Therapy

Success of Anti-Retroviral Therapy

Why is HIV So Hard to Control?

- Kill CD4 T cells
 - The cells required to control infection
- High mutation rates
 - Combination drugs
- Latent infection
 - Most effectively controlled by blocking colonization
 - Entry blocker
 - Vaccine (various strains? neutralizing antibodies)
 - Prevent the spread of HIV

Bone Marrow Transplant As a Treatment for AIDS

Genes that influence progression to AIDS									
Gene	Allele	Mode	Effect	Mechanism of action					
HIV entry	HIV entry								
		Recessive	Prevents infection	Knockout of CCR5 expression					
CODE	∆32	Dominant	Prevents lymphoma (L)	Decreaces quailable CCD5					
CCR5		Dominant	Delays AIDS	Decreases available CCR5					
	P1	Recessive	Accelerates AIDS (E)	Increases CCR5 expression					
CCR2	164	Dominant	Delays AIDS	Interacts with and reduces CXCR4					
CCL5	In1.1c	Dominant	Accelerates AIDS	Decreases CCL5 expression					
CXCL12	3´A	Recessive	Delays AIDS (L)	Impedes CCR5-CXCR4 transition (?)					
CXCR6	E3K	Dominant	Accelerates P. jirovecii pneumonia (L)	Alters T-cell activations (?)					
CCL2-CCL7-CCL11	H7	Dominant	Enhances infection	Stimulates immune response (?)					

Figure 13.35 (part 1 of 2) Janeway's Immunobiology, 9th ed. (© Garland Science 2017)