Exam 2

Outline

- Immunological memory
- Vaccines
 - Concepts
 - Methods
 - Challenges
- Immune evasion
 - Antigenic variation (surface protein and receptors)
 - Latency

Immunological Memory

Immunological Memory

Long-term protection after initial exposure Specialized memory cells: Induced during adaptive immune response Persist in the absence of original antigen

Repeated Immunization Increase Concentration and Affinity of Antibodies

B Lymphocyte Differentiation

Secondary Immune Response

Memory cells are more efficiently activated than naïve cells: Higher CXCL13 Receptors Higher Affinity of BCR Higher Surface level of MHC II

	Source of B cells				
	Unimmunized donor Primary response	Immunized donor Secondary response			
Frequency of antigen-specific B cells	1:10 ⁴ to 1:10 ⁵	1:10 ² to 1:10 ³			
lsotype of antibody produced	IgM > IgG	lgG, lgA			
Affinity of antibody	Low	High			
Somatic hypermutation	Low	High			

Increased Survival of Memory B Cells

Question

• Why is antibody response in a secondary infection more robust than the initial one?

T Lymphocyte Differentiation

Memory T cells arise from effector T cells that maintain sensitivity to IL-7 or IL-15

Memory and Naive T cells

Memory T Cells are Distinct from Effector T Cells

Homing	Protein	Naive	Effector	Memory	Comments
	CD44	+	+++	+++	Cell-adhesion molecule
	CD45R0	+	+++	+++	Modulates T-cell receptor signaling
	CD45RA	+++	+	+++	Modulates T-cell receptor signaling
Homing	CD62L	+++	-	Some +++	Receptor for homing to lymph node
	CCR7	+++	+/-	Some +++	Chemokine receptor for homing to lymph node
_	CD69	-	+++	Ι	Early activation antigen
Survival 🗲	BcI-2	++	+/-	+++	Promotes cell survival
—]	Interferon-y	-	+++	+++	Effector cytokine; mRNA present and protein made on activation
Immune response	Granzyme B	-	+++	+/-	Effector molecule in cell killing
L —	FasL	-	+++	+	Effector molecule in cell killing
	CD122	+/-	++	++	Part of receptor for IL-15 and IL-2
	CD25	-	++	-	Part of receptor for IL-2
Survival 🛛 🗕	CD127	++	-	+++	Part of receptor for IL-7
· ·	Ly6C	+	+++	+++	GPI-linked protein
	CXCR4	+	+	++	Receptor for chemokine CXCL12; controls tissue migration
	CCR5	+/-	++	Some +++	Receptor for chemokines CCL3 and CCL4; tissue migration
	KLRG1	-	+++	Some +++	Cell surface receptor

Figure 11.27 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

CD4 T-Cell Help Is Required for the Development of CD8 Memory

Primes effector T cells to generate CD8 memory cells Promote reactivation of CD8 memory cells Maintain CD8 memory cell numbers

CD4 T cells maintain CD8 Memory Cells

Original Antigenic Sin

Outline

- Immunological memory
- Vaccines
 - Concepts
 - Methods
 - Challenges
- Immune evasion
 - Antigenic variation
 - Latency

Concepts

Features of effective vaccines				
Safe	Vaccine must not itself cause illness or death			
Protective	Vaccine must protect against illness resulting from exposure to live pathogen			
Gives sustained protection	Protection against illness must last for several years			
Induces neutralizing antibody	Some pathogens (such as polio virus) infect cells that cannot be replaced (e.g., neurons). Neutralizing antibody is essential to prevent infection of such cells			
Induces protective T cells	Some pathogens, particularly intracellular, are more effectively dealt with by cell-mediated responses			
Practical considerations	Low cost per dose Biological stability Ease of administration Few side-effects			
Perceived as safe	The perception of whether a vaccine is safe will influence the adoption by the public			

Immune compromised population

In a large percentage of vaccinated population

Effective memory cells: B and T cell activation

Very successful in controlling certain infections Toxins, extracellular pathogens, viral reinfection

Problem: elicit an effective T response

Large vaccinated population will decrease the circulation of the pathogens

Public concerns

Public Concerns

Ingredients: Mercury, Formaldehyde, Aluminum Phosphate, Aspartame, Human Fetal Tissue, Monkey Kidney & Lung Cells, MSG, Bovine Fetal Serum

Measles Resurgent

Measles resurgent

Measles came roaring back in the United States this year and continued an upsurge around the world. Poverty, displacement, conflict, and—particularly in the United States and Europe—vaccine misinformation are all playing a role in the resurgence of a virus that killed an estimated 142,300 people in 2018, and for which there is a highly effective vaccine.

Methods

Top choice: Elicit Proper Immune response Safety issue

Others: Safer but harder

- Prime Dendritic cells (Inflammation) Avoid Tolerance
- Induce proper response
 (Antigen Presentation)
 CD8 or CD4 activation
 Most vaccines induce CD4
 and antibody response
- Mucosal or Systemic

Direct loading of Dendritic Cells

Immunology Began with Immunization

1796 Edward Jenner cowpox vaccine against smallpox

Figure 1-1 Immunobiology, 7ed. (© Garland Science 2008)

Jenner's drawing of cowpox lesion from which he created his vaccine.

Shared Antigenic Elements In Vaccination

Figure 14.1 The Immune System, 3ed. (© Garland Science 2009)

Complete Eradication of Smallpox Was Announced in 1980

Attenuated Vaccine

Risks:

loose the mutations causing attenuation Cause very strong inflammation

Attenuation Through Recombinant DNA Techniques Create Avirulent, Non-Pathogenic Virus

Attenuation Through Recombinant DNA Techniques

Attenuation Through Recombinant DNA Techniques

Conjugate Vaccines

Adjuvants are Required for Conjugate Vaccines

Adjuvants

Adjuvants used in FDA-approved vaccines				
Adjuvant	Vaccine			
Alum (various aluminum salts)	Diphtheria/tetanus/ whooping cough Pneumococcal conjugate vaccine			
Aluminum hydroxide	Cervarix			
D,L-alpha-tocopherol (vitamin E) and squalene	H5N1 influenza vaccine			
Squalene and water emulsion	Fluad (seasonal influenza vaccine)			
CpG 1018 (synthetic DNA)	Hepatitis vaccine (Heplisav-B)			
<i>Quillaja saponaria</i> (lipid from evergreen tree)	Shingrix (shingles vaccine for elderly)			

Success of Neisseria Meningitidis C Vaccine

Newer Methods

Recombinant Peptide Vaccines

Figure 14.5 The Immune System, 3ed. (© Garland Science 2009)

ISCOM: Immune stimulatory complex (lipid micelles carrying immunogenic peptides)

Limitations:

High polymorphism of human HLA gens

Loading of HLA-ABC genes

-Longer peptides

Not great for infectious disease: antibodies against a single epitope on a pathogen are rarely protective. Failed in clinic Use a whole protein--Novavax

Recombinant DNA Vaccines

Figure 15-32 Immunobiology, 7ed. (© Garland Science 2008)

Enhancement by adjuvants expressed by the DNA

Newer generation: RNA vaccine RNA can act as an adjuvant

RNA-based Vaccines

mRNA acts as an adjuvant
Challenges

- Generation of long lasting antibody response
 - IgA type
 - Effective protection require preexisting antibodies (Neutralization)
 - Toxin damage
 - Reinfection
- Generation of robust CD8 response
 - Chronic intracellular infections
 - MHC I and dendritic cells
 - CD4 Cells have to be activated too
 - Higher dose of antigen
 - Strong inflammation

Question

What is NOT required for the generation of CD8 Memory T cells?

- A) protein antigen
- B) Dendritic cells
- C) CD4 helper cells
- D) B cells
- E) Cytokines

Outline

- Immunological memory
- Vaccines
 - Concepts
 - Methods
 - Challenges
- Immune evasion
 - Antigenic variation (surface protein and receptors)
 - Latency

Bacteria Subvert the Host Immune System

Extracellular Bacteria

Bacterial strategy	Mechanism	Result	Examples			
Extracellular bacteria						
Shielding or inhibition of MAMPs	Capsular polysaccharide	Block detection of lipopolysaccharide (LPS)	K. pneumoniae			
	Hypoacylation of lipid A	Antagonism of TLR-4	P. gingivalis			
	Coating of bacterium by host proteins (e.g., fibrin)	Block detection of peptidoglycan	S. aureus			
Antigenic variation	Modulation of expressed pili, fimbriae	Antibodies that block bacterial attachment become ineffective	N. gonorrhoeae, E. coli			
Inhibition of opsonization	Secretion of complement- degrading factors	Cleavage of complement components	N. meningitidis, P. aeruginosa, S. aureus			
	Capsular polysaccharide	Block fixation of complement	S. pneumoniae, H. influenzae, K. pneumoniae			
	Expression of Fc-binding surface molecules (e.g., Protein A)	Prevents binding of antibody to Fc receptors of phagocytes	S. aureus			
	Production of biofilms	Shielding of bacteria from phagocytosis	S. epidermidis, S. aureus, P. aeruginosa			
Inhibition/scavenging of reactive oxygen species (ROS)	Secretion of catalase and superoxide dismutase	Neutralize ROS produced by NADPH and myeloperoxidase (MPO)	S. aureus, B. abortus			
Resistance to antimicrobial peptides (AMPs)	Secretion of AMP- degrading peptidases	Cleavage of AMPs	E. coli			
	Modulation of cell membrane phospholipids	Prevents binding, functional insertion of AMPs in cell membrane	S. aureus			

Intracellular Bacteria

Bacterial strategy	Mechanism	Result	Examples		
Intracellular bacteria					
Antigenic variation	Modulation of expressed pili, fimbriae	Antibodies that block bacterial attachment become ineffective	Salmonella spp.		
Inhibition of MAMP recognition/ signaling	Production of peptidoglycan hydrolase	Block detection of peptidoglycan by NODs	L. monocytogenes		
	Secretion of intracellular toxins	Block NFκB and MAP kinase signaling pathways	Y. pestis		
Resistance to anti- microbial peptides	Secretion of AMP- degrading peptidases	Cleavage of AMPs	Y. pestis		
	Modulation of cell membrane phospholipids	Prevents binding, functional insertion of AMPs in cell membrane	Salmonella spp.		
Inhibition of fusion of phagosome with lysosome	Release of bacterial cell wall components	Inhibits phago- lysosomal fusion	M. tuberculosis, M. leprae, L. pneumophila		
Survival within phagolysosome	Waxy, hydrophobic cell wall containing mycolic acids and other lipids	Resistance against lysosomal enzymes	M. tuberculosis, M. leprae		
Escape from phagosome	Production of hemolysins (e.g., listeriolysin O)	Lysis of phagosome; escape into cytosol	<i>L. monocytogenes,</i> Shigella spp.		

Biofilms Restrain Immune Clearance

EPS: extracellular polymeric substance

Antigenic Variation Allows Repeated Infection with the Same Pathogen

Gene Conversion Prolongs the Infection

Viruses Subvert the Host Immune System

Viral strategy	Specific mechanism	Result	Virus examples
Inhibition of inflammatory response	Viral interference in interferon induction and signaling	Impedes interferon response	HCV, HBV, herpesviruses, adenovirus
	Virally encoded chemokine receptor homolog, e.g., β-chemokine receptor	Sensitizes infected cells to effects of β-chemokine; advantage to virus unknown	Cytomegalovirus
	Virally encoded soluble cytokine receptor, e.g., IL-1 receptor homolog, TNF receptor homolog, interferon-γ receptor homolog	Blocks effects of cytokines by inhibiting their interaction with host receptors	Vaccinia Rabbit myxoma virus
	Viral inhibition of adhesion molecule expression, e.g., LFA-3, ICAM-1	Blocks adhesion of lymphocytes to infected cells	Epstein–Barr virus
	Protection from NF _K B activation by short sequences that mimic TLRs	Blocks inflammatory responses elicited by IL-1 or bacterial pathogens	Vaccinia
Blocking of antigen processing and presentation	Inhibition of MHC class I expression	Impairs recognition of infected cells by cytotoxic T cells	Herpes simplex Cytomegalovirus
	Inhibition of peptide transport by TAP	Blocks peptide association with MHC class I	Herpes simplex
Inhibition of humoral immunity	Virally encoded Fc receptor	Blocks effector functions of antibodies bound to infected cells	Herpes simplex Cytomegalovirus
	Virally encoded complement receptor	Blocks complement- mediated effector pathways	Herpes simplex
	Virally encoded complement control protein	Inhibits complement activation by infected cell	Vaccinia
Immunosuppression of host	Virally encoded cytokine homolog of IL-10	Inhibits $T_H 1$ lymphocytes Reduces interferon- γ production	Epstein–Barr virus

Antigenic Drift and Shift

Figure 13.22 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Latent Viruses "Hide" from the Immune System

Herpesvirus Lifelong infections

Neurons: immunoprivilliged site; neurons carry very low levels of MHC I

Virus doesn't proliferate, thus limited presentation on MHC I for CD8 cells

Chronic Infections Induce Exhaustion

Three challenges

- Long last antibody response
- Robust CD8 T cells
- Immune evasion

• What can you do?