Outline

- Mucosal immunity
 - anatomy of the mucosal immunity
 - cells and tissues of the mucosal immunity
 - mucosal immune response
 - -Tolerance to food and commensal microorganisms
 - -Pathogen defense

Mucosal Immune System: The First Line of Defense

Mucosal Tissues

Largest part of body's immune tissues Physical barriers that separate the body from external environment

Fragile and permeable entry point of pathogens

Exposure to foreign objects (food, microbiota) distinguish from harmful and innocent antigens

Barriers: The First Line of Defense

	Skin	Gut	Lungs	Eyes/nose/oral cavity
	Stratified epithelium	Single cell layer of columnar epithelium	Upper airway: pseudostratified columnar epithelium Lower airway: single cell layer of columnar epithelium	Pseudostratified columnar epithelium
Mechanical	Epithelial cells joined by tight junctions			
Meenanica	Longitudinal flow of air or fluid	Longitudinal flow of air or fluid	Movement of mucus by cilia	Tears Nasal cilia
	Fatty acids	Low pH	Pulmonary surfactant	Enzymes in tears
Chemical		Enzymes (pepsin)		and saliva (lysozyme)
	β-defensins Lamellar bodies Cathelicidin	α-defensins (cryptdins) RegIII (lecticidins) Cathelicidin	α -defensins Cathelicidin	Histatins β-defensins
Microbiological	Normal microbiota			

Types of Epithelium lining the Barrier Tissues

Mucosal Pathogens

Microbiota v.s. Pathogen

The Mucosal Immune System

Distinctive features of the mucosal immune system			
Anatomic features	Intimate interactions between mucosal polarized epithelia and lymphoid tissues		
	Discrete compartments of diffuse lymphoid tissue and more organized structures such as Peyer's patches, isolated lymphoid follicles, and tonsils Specialized antigen-uptake mechanisms, e.g., M cells in Peyer's patches, adenoids, and tonsils		
	Broad surface area in contact with environmental agents/microbes		
Effector mechanisms	Activated/memory T cells predominate even in the absence of infection		
	Multiple activated 'natural' effector/regulatory T cells present		
	Production of mucins and mucus		
	Secretory IgA antibodies		
	Production of antimicrobial peptides (AMPs)		
	Presence of distinctive microbiota		
Immunoregulatory environment	Active down-regulation of immune responses (e.g., to food and other innocuous antigens) predominates at homeostasis		
	Inhibitory macrophages and tolerance-inducing dendritic cells		
	High number of FoxP3 ⁺ T_{reg} cells and FoxP3 ⁻ T_{R}^{-1} cells		

Anatomy of the Gastrointestinal Tract

Outline

- Mucosal immunity
 - anatomy of the mucosal immunity
 - cells and tissues of the mucosal immunity
 - mucosal immune response
 - -Tolerance to food and commensal microorganisms
 - -Pathogen defense

Tight Junctions

Effector Sites of the Gut-Associated Lymphatic Tissue

intraepithelial lymphocytes (IELs), antimicrobial peptides (AMPs), intestinal stem cell (ISC)

Features of Intestinal Epithelial Cell Subsets

Features of intestinal epithelial cell types				
Cell	Lineage	Cell markers	Tissue site(s)	Major functions
Crypt base columnar (CBC)	Intestinal stem cell	LGR5	Small intestine Large intestine	Self-renewal Production of all intestinal epithelial cell types
Absorptive enterocyte	Absorptive	Sucrose isomaltase Lactase	Small intestine Large intestine	Uptake of nutrients and fluids Microbial and metabolic sensing Transport of secretory immunoglobulins
Microfold (M) cell	Absorptive	RANK	Small intestine Large intestine	Antigen uptake Bacterial translocation
Goblet cell	Secretory	MUC2, Trefoil factor	Small intestine Large intestine	Production of mucins Antigen uptake
Paneth cell	Secretory	Lysozyme	Small intestine	Support for intestinal stem cells Secretion of antimicrobial peptides (AMPs)
Tuft cell	Secretory	IL-25	Small intestine Large intestine	Sensing of helminthic odorants and succinate Mobilization of type 2 ILCs via IL-25 and eicosanoid release
Enteroendocrine cell	Secretory	Chromogranin A	Small intestine Large intestine	Respond to multiple nutrient and microbial-secreted products to release hormones and neurotransmitters

Mucins and Mucus

The thickness and structure of mucus are different along the length of the intestines, correlating somewhat with the density of the commensal microbiota from which the epithelium is protected.

Antimicrobial Proteins

Antimicrobial proteins produced in the intestinal mucosa				
Family (examples)	Mechanism of action	Cellular source	Microbial targets	
α-Defensins (humans) Cryptidins (mice)	Cell membrane disruption	Paneth cells Neutrophils Macrophages	Gram+ and Gram– bacteria, fungi, protozoa, viruses	
β-Defensins (e.g., BD1, BD2, BD3)	Cell membrane disruption	Enterocytes	Gram+ and Gram– bacteria, fungi, protozoa, viruses	
Calprotectin (S100A8–S100A9)	Metal chelation	Enterocytes Neutrophils	Gram+ and Gram– bacteria, fungi, viruses	
C-type lectins (e.g., REG3β, REG3γ)	Cell membrane disruption	Paneth cells Enterocytes	Gram+ and Gram– bacteria	
Lysozyme	Cleavage of bacterial cell wall peptidoglycan	Paneth cells	Gram+ > Gram– bacteria	
Phospholipase A ₂	Cleavage of bacterial cell membrane phospholipids	Paneth cells Macrophages	Gram+ bacteria	

Highest concentration of antimicrobial peptides (AMPs) is in the crypts and at the crypt openings antimicrobial C-type lectin REG3γ targets Gram-positive bacteria

Isolated Lymphoid Follicle

M cells identified by expression of peptidoglycan recognition protein-S (PGRP-S; red, example highlighted by asterisk) interacting with processes extended across the basement membrane (BM; indicated by dotted line) by CX3CR1-expressing myeloid cells (green; arrows).

Intraepithelial Lymphocytes

Types of Intraepithelial Lymphocytes

Characteristics of intraepithelial lymphocytes				
IEL subset	Co-receptor expression	TCR repertoire	NK receptors	Antigenic ligands
Unconventional TCRγδ nIEL	CD4-CD8- CD8αα	TCRVγ7 > TCRVγ4 (mouse) TCRVγ1 (human)	NKG2 family CD94 LY49 family (mouse) KIR family (human)	BTNLs (mouse, ? human) MULT1, H60a, Qa-1 (mouse) CD1, MICA, MICB, ULBP (human)
Unconventional TCR $\alpha\beta$ nIEL	CD4-CD8- CD8αα	Oligoclonal	NKG2 family CD94 LY49 family (mouse) KIR family (human)	MHC I, MHC II (mouse, human) Non-classical MHC I (mouse) MICA, MICB, ULBP (human)
Conventional TCRαβ pIEL	CD8+CD8αα CD4+CD8αα	Diverse	None	Peptide:MHC I Peptide:MHC II
ILC1	CD4-CD8-	None	NKG2 family CD94 LY49 family (mouse) KIR family (human)	MULT1, H60a, Qa-1 (mouse) MICA, MICB, ULBP (human)

Types of Intraepithelial Lymphocytes

Function of Intraepithelial Lymphocytes

Function of Intraepithelial Lymphocytes

Function of Intraepithelial Lymphocytes

Antigen Presentation

Characteristics of major mononuclear phagocytes in the intestines				
Intestinal mononuclear phagocyte	Tissue-resident macrophage	Conventional dendritic cell 1 (cDC1)	Conventional dendritic cell 2 (cDC2)	
Common surface markers	MHC class II CD11c CCR2	MHC class II CD11c CCR2	MHC class II CD11c CCR2	
Unique surface markers	CX3CR1 FcγRI (CD64) α _v β ₈	XCR1	SIRPα	
Key inducing cytokines	CSF1 (M-CSF)	FLT3L	FLT3L	
TLRs	TLR-4 ¹⁰ , various	TLR-3+, various	TLR-3⁻, various	
Cytokines produced	TGF-β (activation) (IL-10)	IL-12	IL-6, IL-23, TGF-β	
Prevalence	Abundant	Frequent	Abundant	
Major functions	"Silent" bacterial uptake and destruction Antigen transfer to migratory DCs Efferocytosis Transepithelial antigen sampling	Antigen presentation to naive CD8 T cells	Antigen presentation to naive CD4 T cells	

Acquisition of Antigens

Acquisition of Antigens

Immune Tolerance

Immune Tolerance

	T _{reg} cells are highly enriched in the intestinal mucosa			
	CD4+FoxP3- IL-10- IL-10+		CD4+FoxP3+	
			IL-10 ⁻	IL-10+
Mesenteric LNs	80–90%	~1%	5–10%	~1%
Small intestine	70–80%	5–10%	5–10%	5–10%
Large intestine	60–70%	3–5%	10–15%	15–20%
Large intestine, GF	80–90%	~1%	5–10%	~1%

Intestine-specific Homing of Lymphocytes

Intestine-specific Homing of Lymphocytes

IgA Mediates Mucosal Immunity

B cells activated in GALT receive TGF-beta—IgA Recirculate and home to mucosal tissue

IgA Neutralizes Microbes and Toxins

IgA effector function is not inflammatory

Question

- What are the two cells that facilitate sampling of the microbiota in the gut?
- What is physiological inflammation?

Outline

- Mucosal immunity
 - anatomy of the mucosal immunity
 - cells and tissues of the mucosal immunity
 - mucosal immune response
 - -Tolerance to food and commensal microorganisms
 - -Pathogen defense

	Protective immunity	Mucosal tolerance
Antigen	Invasive bacteria, viruses, toxins	Food proteins; commensal bacteria
Primary Ig production	Intestinal IgA and IgG Specific Ab present in serum	Some local IgA Low or no Ab in serum
Primary T-cell response	Local and systemic effector and memory T cells	pT _{reg} cell induction; no local effector T-cell response
Response to antigen reexposure	Enhanced (memory) response	Low or no response or systemic response

Exposure to Food Proteins Induces Oral Tolerance

Peanut Allergy

D

Outline

- Mucosal immunity
 - anatomy of the mucosal immunity
 - cells and tissues of the mucosal immunity
 - mucosal immune response
 - -Tolerance to food and commensal microorganisms
 - -Pathogen defense

Intestinal Epithelium in Innate Response

Host Response to Attaching and Effacing Enteropathogenic Bacteria

Shigella flexneri infection

News of Salmonella- Jan 2016

https://www.cdc.gov/salmonella/outbreaks.html

List of Selected Outbreak Investigations Linked to Food, by Year

2018	2017	2016	2015	2014	2013	2012	2011	2010	2009	2008	2007	2006
<u>Chicken Salad</u> – <i>Salmonella</i> Typhimurium												
 Kratom - Salmonella I 4,[5],12:b:- 												
 <u>Raw Sprouts [Español]</u> – <i>Salmonella</i> Montevideo 												
 Frozen Shredded Coconut [Vietnamese 🔂 [PDF - 3 pages]] [Español] - Salmonella 4,[5],12:b:- and Salmonella Newport 												

Food Safety News

Breaking news for everyone's consumption

Home	Foodborne Illness Outbreaks	Food Recalls	Food Politics	Events	Subscribe	About Us	Directory

Mexican Cucumbers Fuel Salmonella Poona Outbreak

BY DAN FLYNN | JANUARY 27, 2016

The Salmonella Poona outbreak first disclosed to the public last Sept. 4, and since found to be caused by imported Mexican cucumbers has now rolled into the new year with up to two additional deaths and 50 more cases in 16 states since the last report from the federal Centers for Disease Control and Prevention in Atlanta.

CDC Tuesday issued its first update on the deadly outbreak since last Nov. 19, saying 888 illnesses and six deaths are now associated with the Salmonella Poona outbreak in 39 states. The dangerous outbreak has sent 191 to local hospitals for care. And 106 illnesses have occurred since the recalled cucumbers should have no longer been available in grocery stores or restaurants.

	Directory
[Contact Us
	Subscribe for Free via Email or RSS
	f Like Food Safety News on Facebook
	💟 Follow Food Safety News on Twitter
	in Connect with Food Safety News on LinkedIn

Google[™] Custom Search

Routes of Salmonella Entry

Antibiotic Toxicity

Microbiological barrier Physiological barrier is compromised during inflammation

Anatomy of the Respiratory Tract

The Immune Response to Respiratory Viruses

Immune Components of Barrier Function in Skin

Question

 What determines the balance between tolerance and immunity in the gut?

Fine Balance in Mucosal Immunity

- Tolerance
 - Food
 - Microbiota (Nutrition and barrier)
- Immunity
 - Invading Pathogens
 - Integrity of the physical barrier
- Coevolution of immunity and microbiota
 - Microbiota shapes immunity: development and allergy

Question

- What is NOT true about mucosal immunity?
 A) It contains largest part of body's immune tissues
- B) It is the largest entry point of pathogens
- C) It will attach all foreign objects
- D) It contains both innate and adaptive immunity
- E) Barrier integrity is a primary concern in diseases at mucosal surfaces

Case Studies

- Celiac disease
- Crohn's disease

Celiac Disease (gluten sensitive enteropathy)

- Patient:
 - 12 month baby girl
 - Weight lose
 - Protuberant abdomen
 - Muscle wasting
 - No enlargement of lymph nodes
- Tests:
 - Serologic tests, antibodies to TTG
 - Biopsy of small intestine
- Treatment:
 - Gluten-free diet and recovered

Internal Biopsy

Figure 44.2 Case Studies in Immunology, 6ed. (© Garland Science 2012)

Gliadin Antigen and HLA-DQ2

Figure 44.3 Case Studies in Immunology, 6ed. (© Garland Science 2012)

What's Wrong with the Patient?

- Mounting of adaptive immunity to food antigen
- Dependent on HLA-DQ2/DQ8
- Helped with tissue transglutaminase
 - Antigen process
 - Generation of autoantibody
 - Unknown mechanism
- Avoid antigen will cure disease

Crohn's Disease

- Patient:
 - Abdominal pain
 - Systemic inflammation
 - Toe swelling/Oral ulcers/Shin
 - Weight loss
- Tests:
 - Check for inflammation
 - Biopsy of small intestine
- Treatment:
 - Weekly injection of immune suppressive agents
 - Surgical removal of badly inflamed tissue

Multiple Genetic Factors

What's Wrong with the Patient?

Intolerance of microbiota leading to systemic inflammation