Outline

Antibody Structure Antigen recognition Primary Ab repertoire Antigen-mediated Ig Diversification

Plasma Cell Secreted Ab Specificity is Derived from Its B Cell Precursor Surface Ab

Surface coated antibody is the B cell receptor

Figure 4.1 The Immune System, 3ed. (© Garland Science 2009)

Antibodies Are Responsible for Immunity

In **1891**, Paul Ehrlich proposed that antibodies are involved in an immune response.

Ehrlich's drawing of a "haemotopoietic" cell bearing "side chains" and releasing "immune bodies".

Antibody Structure

Antibody Structure

Globular Regions of Antibodies

Antibody Fragments Have Distinct Functions

Outline

Antibody

Structure

Antigen recognition Primary Ab repertoire Antigen-mediated Ig Diversification

Definition

- Antigen:
 - any substance that causes an immune system to produce antibodies against it
- Epitope:
 - also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells.

Cryo-EM reconstruction of E16 Fab bound to mature WNV particle

Kaufman et al. (2006). West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody. PNAS August 15, 2006 103 (33) 12400–12404. Copyright (2006) National Academy of Sciences, USA.

Spatial Ab: Antigen Complementarity

Linear and Discontinuous Epitopes

Antibody-Antigen Interactions Disrupted by High Salt or Detergent

Noncovalent forces	Origin	
Electrostatic forces	Attraction between opposite charges	$-\overset{\oplus}{\mathrm{NH}_3}$ $\overset{\ominus}{\mathrm{OOC}}$ $-$
Hydrogen bonds	Hydrogen shared between electronegative atoms (N, O)	$\sum_{\delta^{-}}^{N} \frac{H}{\delta^{+}} \frac{H}{\delta^{-}} = C \Big\langle$
Van der Waals forces	Fluctuations in electron clouds around molecules polarize neighboring atoms oppositely	$\begin{array}{c} \delta^+ & \stackrel{\bullet}{\rightarrowtail} & \delta^- \\ \delta^- & \stackrel{\bullet}{\longleftarrow} & \delta^+ \end{array}$
Hydrophobic forces	Hydrophobic groups interact unfavorably with water and tend to pack together to exclude water molecules. The attraction also involves van der Waals forces	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}$ \begin{array}{c} \end{array} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} H $ \end{array}$ $ \begin{array}{c} \end{array}$ H $ \end{array}$ $ \begin{array}{c} \end{array}$ $ \end{array}$ $ \end{array}$ $ \begin{array}{c} \end{array}$ $ \end{array}$ $ \end{array}$ $ \begin{array}{c} \end{array}$ $ \end{array}$ $ \end{array}$ $ \end{array}$ $ \end{array}$ $ \end{array}$
Cation-pi interaction	Noncovalent interaction between a cation and an electron cloud of a nearby aromatic group	H = H = H

Antibodies Recognize Different Antigens on the Same Pathogen

Figure 4.4 The Immune System, 3ed. (© Garland Science 2009)

A pathogen needs to heavily coated with antibody

Hinge Adds Flexibility to Ab Molecule

Nature Reviews | Drug Discovery

Ab Hinge Region Allows Formation of Antigen: Ab Complexes

Figure 4.5 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Structure of Ig Constant and Variable Domains

V Regions of Ab Molecules Are Unique

Hypervariable Loops of V_L and V_H Regions Fold to Form Antigen Binding Site

Complementarity Determining Regions Form Antigen Binding Site

Question

- What does an antibody look like?
- Which part determines antigen specificity?

Outline

Antibody

Structure Antigen recognition Primary Ab repertoire Antigen-mediated Ig Diversification

Immunoglobulin Repertoire

 Total human antibody repertoire is about 10¹¹ specific molecules.

- Antibody repertoire at any give time $t_{(x)}$ is based on:
 - total number of B cells
 - previous encounters with antigen

Sources of Antibody Diversity

- Combinatorial diversity
 - -- Multiple segments of the variable region
 - Allelic exclusion (Once recombined, no other VDJ combination can be expressed by the same B cell)
 - Combination of multiple heavy and light chains
- Junctional diversity
 - VDJ recombination
- Somatic hypermutation
 - Affinity maturation
 - Generation of antibodies with increased binding affinities for the specific antigen
- Class switch (isotype switch)

Antibody Structure

Germline Organization of Ig Loci

Two light chain loci in human Human κ : λ ratio is 2:1

Construction of the Variable Region

VDJ Recombination

12/23 Rule

Number of Functional Ig Gene Segments

Number of functional gene segments in human immunoglobulin loci				
Segment	Light chains		Heavy chain	
	к	λ	Н	
Variable (V)	31–35	29–32	38–46	
Diversity (D)	0	0	23	
Joining (J)	5	4–5	6	
Constant (C)	1	4–5	9	

Somatic Recombination Generated Diversity

Segment	к	λ	Н
Variable (V)	40	30	65
Diversity (D)	0	0	27
Joining (J)	5	4	6

Light chain diversity:

<u> κ chain:</u> 40 V_{κ} x 5 J_{κ} = 200 chains

<u> λ chain:</u> 30 V_{λ} x 4J_{λ} = 120 chains

Heavy chain diversity:

65 $V_H x$ 27 $D_H x$ 6 J_H = 10,530 chains

Combinatorial diversity:

200 IgL_{κ} x 10,530 IgH = 2,106,000 IgM_{κ} 120 IgL_{λ} x 10,530 IgH = 1,263,600 IgM_{λ}

Alternative Splicing

Figure 5.21 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

Mature naïve B Cells Express Surface IgM and IgD

IgM and IgD C_H Are Created by Splicing

Figure 5.19 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

C-regions Are Encoded by Different Ig C_H genes

B-cells Initially Express Transmembrane IgM

Outline

Antibody

Structure Antigen recognition Primary Ab repertoire Antigen-mediated Ig Diversification

Acquisition of Ig Specificity

- Acquisition of primary Ab repertoire – V(D)J recombination (genomic)
 - $-C_H$ splicing
 - expression of surface IgM and IgD
 - expression of secreted pentameric IgM
- Antigen-mediated Ig Diversification
 - Somatic hypermutation (genomic)
 - Class switch (genomic)
 - expression of secreted IgG, IgA, IgE,

Question

- Which steps in antibody generation is controlled by alternative splicing?
- A) VDJ recombination
- B) Changing from membrane bound to secreted IgM
- C) Class switching
- D) Affinity maturation

Question

• What is the B cell receptor?