IL-2 Promotes Cell Growth and Differentiation

Outline

T cell mediated immunity

- T cell differentiation
- T cell-mediated cytotoxicity
- Macrophage activation by $T_H 1$ cells
- Peripheral Tolerance

Effector T Cells

	CD8 cytotoxic T cells	CD4 T _H 1 cells	CD4 T _H 2 cells	CD4 T _H 17 cells	T _{FH} cells	CD4 regulatory T cells (various types)
Types of effector T cell	E	T _H 1	T _H 2	T _H 17	TEH	Treg
Main functions in adaptive immune response	Kill virus-infected cells	Activate infected macrophages Provide help to B cells for antibody production	Provide help to B cells for antibody production, especially switching to lgE	Enhance neutrophil response Promote barrier integrity (skin, intestine)	B-cell help Isotype switching Antibody production	Suppress T-cell responses
Pathogens targeted	Viruses (e.g. influenza, rabies, vaccinia) Some intracellular bacteria	Microbes that persist in macrophage vesicles (e.g. mycobacteria, <i>Listeria, Leishmania donovani,</i> <i>Pneumocystis carinii</i>) Extracellular bacteria	Helminth parasites	Klebsiella pneumoniae Fungi (Candida albicans)	All types	

Figure 9.1 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

Different Types of T-Cells Are Specialized to Deal with Different Classes of Pathogens

Activation of Naïve T Cells

Signal 3

STAT Family of Transcription Factors

Strength of TCR Signalling

Infection Status Determines the Fate of T Cells

Induced regulatory T cells

All-tran retinoic acid

Innate Lymphoid Cells (ILCs)

Cytokines Sustain Specific T Cell Responses in the Periphery

T Cells Secret Cytokines

Pro-inflammatory

ſ	CD8 T cells: peptide + MHC class I							CD4 T cells: peptide + MHC class II		
l	Cytotoxic (killer) T cells		T _H 1 T _H 2 cells cells		_H 2 HIS	T _H 17 cells		T _{FH} cells		
	Cytotoxic effector molecules	Others	Macrophage- activating effector molecules	Others	Barrier immunity– activating effector molecules	Others	Barrier immunity activating effector molecules neutroph recruitme	- J Others S, I I nt	B-cell help	Others
	Perforin Granzymes Granulysin Fas ligand	IFN-γ LT-α TNF-α	IFN-γ GM-CSF TNF-α CD40 ligand Fas ligand	IL-3 LT-α CXCL2 (GROβ)	IL-4 IL-5 IL-13 CD40 ligand	IL-3 GM-CSF IL-10 TGF-β CCL11 (eotaxin) CCL17 (TARC)	IL-17A IL-17F IL-22 CD40 ligan	IL-3 TNF-α GM-CSF d CCL20	IL-21 IL-4 CD40 ligand	TNF-α LT-α CXCL13

Effects of T-Cell Cytokines

Cutokino	T-cell source	Effects on					
Gytokine		B cells	T cells	Macrophages	Hematopoietic cells	Other tissue cells	gene knockout
Interleukin-2 (IL-2)	Naive, T _H 1, some CD8	Stimulates growth and J-chain synthesis	Growth and differentiation	-	_	-	↓T-cell responses IBD
Interferon-γ (IFN-γ)	T _H 1, T _{FH} , CTL	Differentiation lgG2a synthesis (mouse)	Inhibits $T_H 2$ and $T_H 17$ cell differentiation	Activation, ↑MHC class I and class II	Activates NK cells	Antiviral ↑MHC class I and class II	Susceptible to mycobacteria, some viruses
Lymphotoxin-α (LT-α, TNF-β)	T _H 1, some CTL	Inhibits	Kills	Activates, induces NO production	Activates neutrophils	Kills fibroblasts and tumor cells	Absence of lymph nodes Disorganized spleen
Interleukin-4 (IL-4)	T _H 2, T _{FH}	Activation, growth IgG1, IgE ↑MHC class II induction	Growth, survival	Promotes marginal zone macrophage activation	↑Growth of mast cells	_	No T _H 2
Interleukin-5 (IL-5)	T _H 2	Mouse: Differentiation IgA synthesis	_	-	↑Eosinophil growth and differentiation	_	Reduced eosinophilia
Interleukin-13 (IL-13)	T _H 2	lgG1, lgE class switch	-	Promotes marginal zone macrophage	_	<pre> ↑Production of mucus (goblet cell)</pre>	Impaired helminth expulsion

Effects of T-Cell Cytokines

Cutakina	T-cell source	Effects on					
Cytokine		B cells	T cells	Macrophages	Hematopoietic cells	Other tissue cells	gene knockout
Interleukin-17 (IL-17)	T _H 17, T _{FH}	Promotes IgG2a, IgG2b, IgG3 (mouse)	_	_	Stimulates neutrophil recruitment	Stimulates fibroblasts and epithelial cells to secrete chemokines	Impaired antibacterial defense
Interleukin-22 (IL-22)	Т _Н 17	_	_	_	_	Stimulates mucosal epithelium and skin to produce antimicrobial peptides	Impaired antibacterial defense
Interleukin-21 (IL-21)	T _{FH} , some T _H 1, T _H 17, CTL	Stimulates B-cell growth, germinal center formation, IgG class switching	Promotes CTL memory	_	_	_	Deficient antibody responses
Transforming growth factor- β (TGF- β)	T _{reg} , T _{FH}	Inhibits growth IgA switch factor	$T_H 17$ and iT_{reg} differentiation, inhibits $T_H 1$ and $T_H 2$	Inhibits activation	Activates neutrophils	Inhibits/ stimulates cell growth	Death at ~10 weeks
Interleukin-10 (IL-10)	T_{reg} , some T_H1 , T_H2 , T_H17 , CTL	↑MHC class II	Inhibits T _H 1	Inhibits cytokine release	Co-stimulates mast cell growth	_	IBD

Effects of T-Cell Cytokines

Cutokino	T-cell source	Effects on					
Gylokine		B cells	T cells	Macrophages	Hematopoietic cells	Other tissue cells	gene knockout
Transforming growth factor- β (TGF- β)	T _{reg} , T _{FH}	Inhibits growth IgA switch factor	$T_H 17$ and iT_{reg} differentiation, inhibits $T_H 1$ and $T_H 2$	Inhibits activation	Activates neutrophils	Inhibits/ stimulates cell growth	Death at ~10 weeks
Interleukin-10 (IL-10)	T_{reg} , some $T_{H}1$, $T_{H}2$, $T_{H}17$, CTL	↑MHC class II	Inhibits T _H 1	Inhibits cytokine release	Co-stimulates mast cell growth	_	IBD
Interleukin-3 (IL-3)	T _H 1, T _H 2, T _H 17, some CTL	_	_	-	Growth factor for progenitor hematopoietic cells (multi-CSF)	_	_
Tumor necrosis factor- α (TNF- α)	T _H 1, T _H 17, some T _H 2, some CTL	_	_	Activates, induces NO production	-	Activates microvascular endothelium	Susceptibility to Gram + sepsis
Granulocyte– macrophage colony-stimulating factor (GM-CSF)	T _H 1, T _H 17, some T _H 2, some CTL	Differentiation	Inhibits growth?	Activation Differentiation to dendritic cells	↑Production of granulocytes and macrophages (myelopoiesis) and dendritic cells	_	_

Question

• What are the major subtypes of CD4+ T cells? And their function?

• Which cytokines are required to promote their differentiation, respectively?

Outline

T cell mediated immunity

- T cell differentiation
- T cell-mediated cytotoxicity
- Macrophage activation by $T_H 1$ cells
- Peripheral Tolerance

CD8 T Cells

Priming In lymph nodes

At infection site

Most CD8 T-Cell Responses Require CD4 T-Cells

CD8 T-Cell Memory Requires CD4 T-Cells

With a pathogen that induce an severe acute infection, effector T cells are generated, but not the memory T cells.

Figure 11.26 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

CD8 T Cells

Target killing does not require co-stimulation

Cytotoxic T Cells are Serial Killers

Immunological Synapse

supramolecular adhesion complex

Polarization of T-Cells During Antigen Recognition

Cytotoxic granules Microtubules

Granzyme Induced Apoptosis

Question

• How does CD4 T cells help CD8 T cells to become activated in the lymph node?

Outline

T cell mediated immunity

- T cell differentiation
- T cell-mediated cytotoxicity
- Macrophage activation by $T_H 1$ cells
- Peripheral Tolerance

T_H1 Cells Activate Infected Macrophages

Macrophages Activated by T_H1 Cells Are Highly Microbicidal

Responses to Intravascular Pathogens Are T_H1 Dependent

Increase the number of effector cells at infection site Proinflammatory

Leishmania major

 L. major is an intracellular pathogen which infects the macrophages and dendritic cells.

http://www.nature.com/nri/journal/v2/n11/fig_tab/nri933_F1.html

Nature Reviews | Immunology

Responses to Intravascular Pathogens Are T_H1 Dependent

T_H2 Cells in Helminth Infection

M2 Macrophages

T_H17 Cells in Extracellular Bacterial Infection

Regulatory T Cells

IPEX: Case Study

Patient:

- atopic dermatitis shortly after birth
- diarrhea and type I diabetes
- Enlarged lymph nodes and autoantibodies

Family history:

• A sibling died in infancy

Diagnosis:

• Missense mutation in FOXP3 gene

IPEX

Figure 18.2 Case Studies in Immunology, 6ed. (© Garland Science 2012)

IPEX

 IPEX: Immune dysregulation, polyendocrinopathy, enteropathy X- linked disease

- Lack of T reg
- Targeting self organs
 - Endocrine, platelet, skin, etc

Question

- Can IPEX be treated with bone marrow transplantation ?
- A) yes
- B) no

Case Study-Lepromatous Leprosy

• Patient:

18 year old femaleHypopigmentationHair lossNose bleedRegional lepromatous leprosy

• Diagnosis:

Acid-fast bacilli from biopsy

• Treatment:

Drugs that kill M. leprae

Cutaneous Nodules

Figure 48.3 Case Studies in Immunology, 6ed. (© Garland Science 2012)

Infection with Mycobacterium leprae can result in different clinical forms of leprosy

There are two polar forms, tuberculoid and lepromatous leprosy, but several intermediate forms also exist

Organisms present at low to undetectable levels

Low infectivity

Granulomas and local inflammation. Peripheral nerve damage

Normal serum immunoglobulin levels

Normal T-cell responsiveness. Specific response to *M. leprae* antigens Lepromatous leprosy

Organisms show florid growth in macrophages

High infectivity

Disseminated infection. Bone, cartilage, and diffuse nerve damage

Hypergammaglobulinemia

Low or absent T-cell responsiveness. No response to *M. leprae* antigens

Figure 48.4 Case Studies in Immunology, 6ed. (© Garland Science 2012)

Two Types of Leprosy

Figure 48.5 Case Studies in Immunology, 6ed. (© Garland Science 2012)

What's Wrong with the Patient?

 Mounting of a Th2 response with does not contain an infection in macrophage phagosomes.

Question

What can you do to tweak the Th1 vs Th2 response?