T Cells Migrate to Thymus to Mature

Figure 7.1 The Immune System, 3ed. (© Garland Science 2009)

Stages of T-Cell Development

Checkpoints During T-Cell Development

Figure 7.15 The Immune System, 3ed. (© Garland Science 2009)

T-Cell Selection

Positive selection:

–Survival signal for further maturation of T-cells capable of weak binding to MHC:self-peptide (MHC restricted cells)

- Cortex of the thymus
- Cortical epithelial cells

Negative selection:

 Apoptosis of self-reacting T-cells due to strong binding of TCR to MHC:selfpeptide complex

- Cortex and medulla of the thymus
- Bone marrow derived DCs and macrophages
- Medullary stromal cells

TOLERANCE

Different Cells Mediate Positive and Negative Selection

Cortical Macrophages Clear Dead T-Cells

Red: apoptotic cells Blue: macrophages

Positive Selection Shown in Bone Marrow Chimeras

T-Cell Recognition of Antigens Is MHC Restricted

Positive Selection Requires TCR Recognition of MHC:Peptide Complex

Figure 7.16 The Immune System, 3ed. (© Garland Science 2009)

Thymic Cortical Epithelial Cells Mediate Positive Selection

Affinity Model of Thymocyte Selection

MHC Class I and Class II

MHC Restriction

Thymic Cortical Epithelial Cells Mediate Positive Selection

Alpha Chain Rearrangement Stops When the Cell Is Positively Selected

Question

- T cell positive selection
- What is the purpose of positive selection?
- What cells and molecules mediate positive selection?

T-Cell Selection

Positive selection:

- –Survival signal for further maturation of T-cells capable of weak binding to MHC:self-peptide
- Cortex of the thymus
- Cortical epithelial cells

Negative selection:

- Apoptosis of self-reacting T-cells due to strong binding of TCR to MHC:selfpeptide complex
- Cortex and medulla of the thymus
- Bone marrow derived DCs and macrophages

T Lymphocyte Differentiation

T-Cells Specific for Self-Antigens Are Deleted in the Thymus

Figure 8.29 Janeway's Immunobiology, 9th ed. (© Garland Science 2017)

T_{reg} cells requires moderately high affinity for self peptide:self MHC

Bone Marrow Derived Cells Mediate Negative Selection in the Thymus

Positive selection: a Negative selection: axb

Figure 8.35 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

Bone Marrow Transplant

Figure 5-10 The Immune System, 2/e (© Garland Science 2005)

Newly generated cells don't attach How does selection result in tolerance?

Bone Marrow Transplant Corrects Blood Cell Defects

Figure 1.3 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

Cellular Organization of the Thymus

Figure 7.3 part 2 of 2 The Immune System, 3ed. (© Garland Science 2009)

AIRE (autoimmune regulator) Is Expressed by the Medullary Epithelial Cells of the Thymus

controls presentation of tissue restricted self-antigens (i.e. from tissues outside of thymus, such as insulin)

Figure 7-34 Immunobiology, 7ed. (© Garland Science 2008)

AIRE Medullary cells

Impaired tolerance to insulin

Question

- T cell negative selection
- What is the purpose of the negative selection?

Which cells and molecules mediate the negative selection?

Mature T Cells Leave Thymus

Donor and Recipient Must Share HLA Class I and II Molecules to Reconstitute T-Cell Function

Figure 5-11 The Immune System, 2/e (© Garland Science 2005)

T cells restricted by which MHC will pass <u>positive</u> selection? MHC^F bone marrow transplanted into MHC^{FxZ} recipient

A)F B)Z C)Both D)Neither

T cells restricted by which MHC will pass <u>positive</u> selection? MHC^{FxZ} bone marrow transplanted into MHC^W recipient

```
A)F
B)Z
C)W
D)All
E)None
```

- Will the skin graft from MHC^z animal be tolerated? MHC^{FxZ} bone marrow transplanted into MHC^F recipient
- A) Yes
- B) No

Skin: All cells express MHC^z

- Will the skin graft from MHC^w animal be tolerated? MHC^{FxZ} bone marrow transplanted into MHC^F recipient
- A) Yes
- B) No

- Will the majority of developed T cells be activated in response to infection?
- MHC^F bone marrow transplanted into MHC^Z recipient
- A) Yes
- B) No

Case Study-APECED

Patient:

- 18 month-retarded growth due to insufficient thyroid hormones
- 6 year-same thing plus hair loss
- 8 year-Candida infection in the mouth
- 18 years-bruise easily due to idiopathic thrombocytopenic purpura

Family history:

2 year older sister similar condition

Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy

Autoantibody to IL-17 and IL-22, which is critical in fighting fungal infection

Figure 17.3 Case Studies in Immunology, 6ed. (© Garland Science 2012)

Figure 17.4 Case Studies in Immunology, 6ed. (© Garland Science 2012)

self reactive antibody against ovarian oocyte

What's Wrong with the Patient?

- Defect in the AIRE gene, autoimmune regulator
- A transcriptional regulator expressed
 mainly in medullar epithelial cells
- -negative selection

AIRE

• How are tissue specific antigens present in the thymus for negative selection?

Question

- What cells mediate negative selection in thymus?
- A) bone marrow derived
- B) thymic cells
- C) both
- D) neither